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On Potential and Field Fluctuations in 
Two-Dimensional Classical Charged Systems 
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We supplement a previous paper on three-dimensional systems by studying the 
electric potential and field fluctuations in two-dimensional Coulomb systems. 
The novelty in two dimensions is that the fluctuations of the potential at a point 
are infinite in the thermodynamic limit. However, the potential difference 
between two points has finite fluctuations, which resemble the ones which occur 
in the three-dimensional case. The field fluctuations are also rather similar in 
both cases. The correlations do not have a fast decay. Explicit results are 
obtained for a solvable model; the fluctuations of the potential are Gaussian 
with an infinite variance. 
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1. I N T R O D U C T I O N  

T h e  p o t e n t i a l  a n d  f ie ld  f l uc tua t i ons  in t h r e e - d i m e n s i o n a l  c lass ica l  c h a r g e d  

sys tems  h a v e  b e e n  r ecen t l y  s tudied.  (1~ In  the  p r e sen t  paper ,  we br ie f ly  

c o n s i d e r  the  s a m e  p r o b l e m  for  t w o - d i m e n s i o n a l  systems,  a n d  s h o w  tha t  

t hey  exh ib i t  a r a the r  s imi la r  b e h a v i o r ,  with,  howeve r ,  s o m e  mod i f i ca t i ons .  

O n e  of  the  m o t i v a t i o n s  for  s t u d y i n g  t w o - d i m e n s i o n a l  sys tems  is that ,  in a 

spec ia l  case,  the  o n e - c o m p o n e n t  p l a s m a  at  s o m e  p a r t i c u l a r  t e m p e r a t u r e ,  a 

va r i e ty  of  exac t  resul ts  c a n  be  o b t a i n e d  expl ic i t ly  (2-4) a n d  be  used  as checks  

a n d  i l lus t ra t ions  fo r  the  m o r e  gene ra l  results .  
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We use here the same notations as in Ref. 1. Equations from Ref. 1 are 
referred to as (I.l.1), etc. The two-body potential between two particles of 
charges e~, and e~2 located at x I and x 2 now is some short-range potential 
plus 

,(x]~x~ ,x2a2) = - e,~ e,~21n(]x I - x 2 ] /  L ) (1.1) 

where L is some length scale which will be irrelevant in the following. 
In Section 2, we study the general properties of the two-dimensional 

case. In Section 3, we illustrate these properties in the special solvable case 
of a one-component  plasma at a temperature such that the dimensionless 
coupling constant be F = 2. 

2. THE GENERAL TWO-DIMENSIONAL CASE 

2.1. Average Potential 

Before discussing the fluctuations, let us note that the average potential 
itself, in two dimensions as well as in three dimensions, can be different 
from zero even in an homogeneous state. If the infinite system is obtained 
as the thermodynamic limit of a finite system, this finite system in general 
will have a nonzero charge density near its boundaries (even if there is no 
net surface charge, a double electric layer will be formed near the bounda- 
ries). Inside the system, far from the boundaries, the macroscopic potential 
will be constant but in general different from zero, and this will remain true 
when the boundaries recede to infinity. 

2.2. Potential Fluctuations 

Let us now consider the fluctuations at neutral points. For three- 
dimensional systems, the whole analysis of Ref. 1 was based upon the 
assumption of the existence of a thermodynamic limit for the potential 
fluctuations. In a two-dimensional system, we cannot assume that the 
potential fluctuations have a thermodynamic limit; on the contrary, it can 
be seen that these fluctuations diverge logarithmically as the size of the 
system becomes infinite, by the following argument which is closely related 
to the one developed in the concluding remarks of Ref. 1. 

Let us consider for instance a system in a disk A of radius R 0, and the 
potential fluctuations at its center 

wA(o, o)= <[ v(o)L[ v(o)L>  = f dx lnix@y lnlylS (x, y) (2.l) 
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The "dangerous" contributions to (2.1) come from the boundary region. 
Suppose for instance that x is close to the boundary. Although the total 
excess charge carried by the particle at x vanishes, 

lAdY SA(X, y)  = 0 (2.2) 

this excess charge will have in general a nonvanishing dipole moment 

lady ySA(X, y)  = O(1) (2.3) 

localized near the boundary and therefore the potential at the origin 
created by this excess charge will be O(1/Ro) (instead of O(1/R 2) in three 
dimensions): 

1 fAdyln[y[SA(X, y)= O(--~O0 ) (2.4) 

This estimate (2A) (valid for x near the boundary) must be multiplied by 
lnlx[ and integrated upon x in the boundary region which has an area of 
order R 0. Thus, the corresponding contribution to (2.1) is O(ln R0) [instead 
of O(1/Ro) in three dimensions], and WA(0, 0) diverges like ln R 0 when R 0 
becomes infinite. 

However, a similar argument indicates that the fluctuations of the 
potential difference between two points do have a well-defined thermody- 
namic limit. We now consider the quantity 

AA(X, y) = ([ V(x) - V(y)I2)A 
= < W ( x )  - +ffz(lnlx - z I - l n l y  - z l )  

• fAdt (lnlx - t I - lnly - tl)Sa(z, t) (2.5) 

We assume that the average potential difference ( V ( x ) -  V(y))  A goes to 
zero in the thermodynamic limit (i.e., the plasma is a conductor inside 
which there cannot be a macroscopic electrical field). Let us investigate the 
behavior of the last term of (2.5). If z is near the boundary, we now have 

1 fhdt ( In [z - - t [  -- ln[y --t[)SA(z,t)= O( R--~o ) (2.6) 

and the corresponding "dangerous" contribution to (2.5) is O(1/R 2) and 
vanishes as R0-+ oo. This indicates that AA(x,y ) has a thermodynamic 
limit. 

Assuming the existence of this limit, it would be possible to adapt the 
analysis of Ref. 1 to the two-dimensional case. Here, we shall rather use a 
more heuristic argument, as follows. Since the contributions to (2.5) from z 
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near the boundary vanish as R 0 ~ ~ ,  we can disregard these contributions 
and choose z far from the boundary. Assuming that SA(z,t) has good 
cluster properties, the relevant values of t will also be far from the 
boundary; thus SA(z, t) can be replaced by its bulk value, i.e., its thermody- 
namic limit S(z - t), and the integration domain of t extended to infinity. 
Since 

f d t ( l n l x -  t l -  l n l y -  tl)S(z - t) 

has a fast decay when Izl-+  [faster than any inverse power law if 
S(z - t) decays faster than any inverse power law], we can finally extend 
also the integration domain of z to infinity. 

Therefore, the fluctuations of the potential difference have a well- 
defined limit, the analog of the second expression in (1.3.7): 

A(x)  = lim AA(x + y, y) 
A~R 2 

= f dz(lnlx - zL- lnlzl) f dt(lnlx - t l -  ln[t[)S(z - t) (2.7) 

Applying twice the convolution theorem of Fourier transforms, we 
obtain the analog of (I.3.10) 

S(k)  (2.8) A ( x ) =  2 f dk [ 1 -  exp(ikx) ] 
Ikl 4 

where the Fourier transform S(k) is defined as 

g(k) f dx exp(ikx)S(x) (2.9) 

Alternatively, we can write the analog of the first expression in (I.3.7), as 
shown in Appendix A: 

A(x)  = ~rfdy(lyl21nly[- Ix - yl21nlx - y l )S (y )  (2.10) 

2.3. Field Fluctuations 

The field fluctuations are now obtained by deriving the fluctuations of 
the potential difference: 

1 ~2 A(x - y )  (2.11) erS(x - Y )  = ( E r ( x ) E S ( y ) )  - 2 ~x  r ~yS 

Thus, we obtain from (2.8) the analog of (1.4.6) 

k~k" S(k~ (2.12) 1 0 2 = jt'dk exp(ikx) "r % ~ 
erS(X) = ~ ~ x r O x  s A ( X )  i k l  2 , , 
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and from (2.10) the analog of (I.4.1) 

(X __y)r 
e=(x) = - ~rj 8=lnlx - y[ + 

where we have used the perfect screening property 

f dy s(y)  = o 

Note that the scalar product is somewhat simpler 

2 5~(k) 
(E(x)E(O))  = ~ err(x) = 2~dkexp( ikx )  - 

Ikl 2 r=l  ,J  

(x _ y)S Is(y)  
(2.13) 

J 

(2.14) 

2~fdylnlx-ylS(y) 
(2.15) 

2.4. Asymptotic Behaviors 
The asymptotic expressions of the above quantities, as Ix]---> ~ ,  are 

A (x) = - ~ l n l x l f  • lYlzS(y) + o(lnlxl) 

= 2 k B T l n l x l  + o(lnlxl) (2.16) 
(where the second equality follows from the second Stillinger-Lovett sum 
rule) and 

1 + o ( ! )  (2.17) erS(X) = ksT(3, ,  - 2.~r.~ s) ~ \ IX[ 2 

Thus both A (x) and erS(x) do not have a fast decay. However, from (2.15) 
we see that the trace of e=(x) decays faster than any inverse power law if 
S(y)  has that property. 

2.5. F luctuat ions at a Charged Part icle 

Finally, let us consider the fluctuations at a charged particle. The 
potential fluctuations will diverge. However, the field fluctuations will be 
finite, and will obey the analogs of (I.5.10) and (I.5.11) in two dimensions, 
where 47r has to be replaced by 2~r. 

3. THE O N E - C O M P O N E N T  P L A S M A  AT F = 2 

The general results of Section 2 will now be illustrated in a simple case, 
the two-dimensional one-component plasma (particles of Charge e in a 
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uniform background); when the dimensionless coupling constant F = 
e2/ksT has the special value F -- 2, this model is exactly solvable. 

3.1. Average Potential 

We consider a system of N particles plus a background, with zero total 
charge, in a circular box of radius R 0. We choose the unit of length in such 
a way that the background density be p = 1/~r (for a neutral system, 
R 0 = ~/N in these units). We want to compute the average electrostatic 
potential (V(0))  u at the center of the box 

(V(O))N = --e;xl<~dxlnlxl[PN(X) - p] (3.1) 

At F = 2, the one-body density is 

N-1 ix12. 
0N(X) = pexp(--[x[ 2) ~ (3.2) 

n=o y(n + 1,N) 

where 

+ 1, N) = "JoNdtt%xp(-- t) (3.3) y(n 

is the incomplete gamma function. As shown in Appendix B, the thermody- 
namic limit of (3.1) exists and is 

(V(0 ) )  = ~ ( 2 1 n 2 -  1) (3.4) 

�9 Thus, even for this system which has no net charge, the potential has a 
nonzero thermodynamic limit. This value can be understood as being the 
potential difference across the double electric layer which builds itself near 
the walls. Actually, in the limit of a semi-infinite system bounded by an 
uncharged wall, the density (3.2) becomes at a distance l from the wall (3) 

2 pfo~176 e x p [ - ( t - / , ~ - ) 2 ]  
. ( t )  = T T- (3.5) 

where �9 is the error function, and the potential difference across the barrier 
indeed is 

2~refo~dlI[p(l) - P] = 4 (21n2 - 1) (3.6) 

in agreement with (3.4). 
In the thermodynamic limit, the net charge density e[PN(X ) --p] be- 

comes zero for any finite Value of [x], and the potential becomes constant. 
Therefore, its limit is (3.4) also at any other point. 
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3.2, Potential Fluctuations 

We now compute the potential fluctuations at the origin (for a finite 
system). From (2.1), 

<[ V(O) ]~[ V(O)Iu>U 

=e2f dxf dylnxln y[OrN(X,y)+pN(X)8(x--y)] (3.7) 
Ixl<~ JtY <'~- 

At F = 2, the one-body density ON(x) is given by (3.2) and the truncated 
two-body density or(x, y) is 

PUT( x, Y) = --p2exp(- ]xl 2 -- lyl 2) 

N - I  

x 2 IxI"+PIyln+P exp[i(n-p)q)] (3.8) 
,,e=0 7(n + 1 ,X)v(p  + 1,N) 

where qv is the angle between the vectors x and y. As shown in Appendix B, 
for large N, 

e 2 
([  V(0)]N[ V(O)]N).~ --~ ( lnU + C + 1) (3.9) 

where C is Euler's constant, and thus it diverges logarithmically in the 
thermodynamic limit. 

It may be noted that the same result is still obtained with a different 
way to the thermodynamic limit. If we take R 0 >> ~/N, the particles form a 
blob a t  the center of the circular background, leaving unneutralized back- 
ground around. We can t a k e  the limit R0---> oo first, for a fixed value 
of N. Then, instead of (3.2) and (3.8), we obtain similar expressions with 
7(n + 1,N) replaced by F(n + 1), and 7(p + 1,N) replaced by F(p + 1). 
The calculation of the fluctuations, in Appendix B, is insensitive to these 
replacements, and therefore (3.9) is still valid in this case. 

Although ([ V(0)] 2) diverges, if we now look at the reduced variable 

[v(o)]N 
v = ( e / 2 ) ( l n N ) , / 2  (3.10) 

it is amusing to see that we can obtain its complete probability distribution 
in the thermodynamic limit, and that this distribution turns out to be 
exactly Gaussian. This can be shown as follows. The probability distribu- 
tion of v is, for a finite system of N particles, 

QN(V) = ( 6[v + 2 ~'~=l(ln]x"[ -- (ln'x"l)N) )) 
(-ln N )')5 N (3.11) 
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the Fourier transform of which is 

Tu( k ) = ;~_~ dv exp( ikv)Q(v) (3.i2) 

As shown in Appendix B, in the thermodynamic limit, the characteristic 
function Tu(k ) becomes a Gaussian, 

T(k) = lim Tu(k ) = ex - (3.13) 
N - ~ .  -2- 

a n d  therefore the probability distribution QN(v) has the limit 

Q(v) = N-->oolim Qx(v) - (2 ,/a exp - -~- (3.14) 

which is also Gaussian, with a variance 

(l)2> = 1 (3.15) 

in agreement with (3.9) and (3.10). 
The Gaussian behavior (3.14) has some similarity with the Gaussian 

behavior found in three dimensions for the contributions from distant 
regions; here, the divergence comes from the remote particles, which 
therefore give the dominant contribution, and it is not a surprise that this 
contribution is Gaussian. 

We now consider the fluctuations of the potential differences. Using 
(2.7) or (2.10) with (z) 

S(y)= e2[- 1--exp(-lyl2) +13(y)] (3.16) 
q7 2 

or (2.8) with 

we find 

A (x) = 7 e2 [21nix] - (Ix[ 2 + 1)Ei(-[x[ 2) - e x p ( - I x l  2) + C + l]  (3.18) 

where 

Ei ( - Ix[  2) = - (•dt e x p ( -  t) (3.19) 
atxl 2 t 

is the exponential-integral function. Since here e 2 = 2k~T, (3.18) does have 
the asymptotic behavior (2.16). 
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3.3. Field Fluctuations 

From the first expression (2.12) and (3.18), one obtains 

~-e2 I 1 -6r ,  Ei(- lxl2)} (3.20) er '(x)  = / (St' - 22~2')[ 1 - e x p ( -  Ix[2)] ] - ~  

The asymptotic behavior of (3.20) is in agreement with (2.17). Furthermore 

2 

( E ( x ) E ( O ) )  = ~,  err(x) = -- e2Ei(-[x[  2) (3.21) 
r = l  

and this expression indeed decays faster than any inverse power law. 
Alternatively, (3.20) can be obtained directly from (2.12) or (2.13), and 

(3.21) from (2.15). 

ACKNOWLEDGMENTS 

We would like to thank J. L. Lebowitz and Ph. A. Martin for 
stimulating discussions and for having made Ref. 1 available to us prior to 
publication. Both of us benefited of the kind hospitality of J. L. Lebowitz at 
Rutgers University, where this work was supported in part by AFOSR 
Grant No. 82-0016. 

APPENDIX A 

For deriving (2.10) from (2.7), we use the identity 

lnlxl = " 1 + �88 (A1) 

Thus, 

f dt(lnlx- tl - l n l t l ) S ( z -  t) 

= 1_4 f dtAt(lx - t[21n]x - t [ -  [t[21n[t[)S(z - t) 

= 14 f d t ( ] x -  t[21n[x- t [ -  [tl21n[t[)AtS(z- t) 

= !A fdt(Ix4 - t[21nlx - t [ -  Itl21nltl)S(z - t) (A2) 

where we have performed an integration by parts. Using (A2) in (2.7), we 
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obtain 

A(x) = ~ f dz(lnlx - z[-  lnlzl)Az 

• [ fd t  (]x-tIZlnIx - t I - It121nlt])S(z-t)] 

= E2 f d z  [8(x - z) - 6(z)] 

•  - t [ -  [t[21n{t])S(z - t)] (A3) 

where we have again performed an integration by parts and used 

A in(z) = 2~r6(z) (A4) 

From (A3), one readily obtains (2.10) after regrouping equal contributions. 

APPENDIX B 

For computing (3.1), we use 

fix ~r ~ i< dxln[xlexp(-[xl2)lxl2n--~ OnY(n+ 1,N) (B1) 

and obtain 

_ e o n l n T ( n + l , N ) _ N l n N +  N < V(O)>N = 2 [ rt=O (B2) 

For taking the thermodynamic limit of (B2), we rewrite the series as 

N-1 _~n N-I U--l~n 7(n + I ' N ) ( B 3 )  
lny(n+ 1,N)= ~ t~(n+ 1)+ ~ In F(n+ 1) 

n = 0  n = 0  n = 0  

where tp(n + 1) is the logarithmic derivative of the ~, function: 

+(n+ l ) = d l n r ( n +  l ) = d l n f f f  dttnexp(-t)  (B4) 

For computing the first term in the right-hand side of (B3), we use 

• ( n + l ) = - C +  ~ _1 (B4') 
p = l  P 

where C is Euler's constant; rearranging the double summation upon n and 
p, we obtain 

N--1 N--1  

tp(n+ 1 ) = N  ~ I _ N C _ N +  1 (B5) 
n = 0  n ~ l  /// 
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In the large N limit, 

~2 1 - - l n N + C -  1 
n=l  jr/ ~ + (B6) 

For computing the second term in the right-hand side of (B3), we note that 
the relevant values of n are such that N -  n = O(,/N), and we use the 
asymptotic formula valid in that case, 

where 

(B7) 

�9 (x) = ~ s exp( - t 2) (B8) 

is the error function. In the large N limit, the sum upon n becomes an 
integral, and thus 

N--1 O "y(jv/ + 1,N) 
lira .~2=0 ~ In N-~  = r(n + 1) lim ['" l 

= - l n 2  ( B 9 )  

The above results lead to (3.4) 
For computing (3.7), we use again (B1) and 

flxl<-dx (lnlxt)2exp(- 7r 0 2 Ixl2)lxl 2" -  ~ On 2 r(n + 1 ,N)  

and obtain 

e2 N~I  02 
<[ V(0)]N[ V(0)]~>N = q- ~ -~n 2 lnr (n  + 1,U) 

- e 2 [ N ~  1 d--~2 lnF(n 
4 [ .=o dn 2 

(B10) 

02 7(n + 1,N)  ] 
+ l ) + - -  

0n 2 In F(n + 1) 
J 

(Ull) 

From (B7), one readily sees that the second term in the last expression 
(B11) has a vanishing thermodynamic limit. For studying the first term, we 
use 

d 2 ,,72 
lnF(n + 1) = 1 (B12) 

dn 2 6 p2 p= l  
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and rearrange the double summation upon n and p into 

N--I  d2  N - 1  
- - l n F ( n +  1 )=  ~ __1 + N  ~ 1 ~ l n N +  C +  1 (B13) 

n = 0  dn 2 p = l  P p=N - ~  

from which (3.11) results. 
For studying (3.12), we write it as 

TN(k ) = exp ,1 -L-Si/2 2 ( ln lxn l  2 - ( l n l x . [ 2 ) N  (B14) 
n = l  N 

Since the N-body distribution function, after it has been integrated on all 
angles, (2) is proportional to 

exp - Ixnl 2 2 I I  [X%l 2n 
P n = 0  

where the sum runs on all permutation P=(Oto, O~I,O~2, o~N_I) of (1,2, 
3 . . . . .  N), one readily obtains from (B1) and (B14) 

l nT  N(k)= lnI" n +  1 
n = 0  

ik ) 
(INN) ~/2 

q 

- l n I ' ( n  + 1) + ik I 
( lnN)l /2  ff(n + 1) J (B15) 

(We consider here the case in which the radius of the background has 
already been made infinite, and therefore only complete u functions are 
involved.) Expanding (B15) in powers of k, we find 

1 - i k  ) n~__0~'(n+ 1) - i k  lnTN(k) = ~ (ln~-~,/2 + . (lnN)l/2 

N - I  

• ~ +"(n + 1) + . . .  (B16) 
n = 0  

It is easy to see that ~,+'(n + 1) and similar sums involving higher 
derivatives of ~b have finite limits as N ~  m. However, from (B13) it results 
that ~ ' ( n  + 1) behaves like lnN. Therefore only the first term in the 
right-hand side of (B 16) contributes to the limit N ~ m, which is given by 
(3.13). 



On Potential and Field Fluctuations 569 

R E F E R E N C E S  

1. J. L. Lebowitz and Ph. A. Martin, J. Stat. Phys. 34:287 (1984). 
2. B. Jancovici, Phys. Rev. Lett. 46:386 (1981). 
3. B. Jancovici, J. Phys. Lett. (Paris) 42:L223 (1981). 
4. B. Jancovici, J. Stat. Phys. 28:43 (1982). 
5. L. Blum, Ch. Gruber, D. Henderson, J. L. Lebowitz, and Ph. A. Martin, J. Chem, Phys. 

78:3195 (1983). 


